COMBINATORICS

Volume 11 (1989), Number 2, Aphll, pages 4-18.
The newsletter of the
Combinatorial Mathematics Socicty of Australasia

Annual Sudscriptions

If there is a tick here, your membership fee is now duc. Please send $\$ 5$ in Australian currency to the Treasurer of CMSA (adding $\$ 2$ to foreign cheques to cover bank charges).

CMSA OFFICEBEARERS

Director
Professor Aume Street
Dept of Mathematics

Treasurer
Dr Ruger Duke Depl of Computer Science

Sccretarics

Dr Elizabeth Dillington
Dept of Mathematics

Dr Diane Uonovan

Depl of Mallematics
(All at the University of Quecusland, St Lucia, Quecnsland 4067, Australia.)
Edilor, Dooklet Serics
Dr Kicvin McAvaney
Division of Compuling \& Mathematics
Deakin University, Geelong, Victorin 3217, Australia

COMBINATORIAL MATIIEMATICS SOCIEIY

of

AUSTIRAI」SIA

The, Combinatorind Mnthematics Society of Australssin was formed in 1978, with the aim (as stated in its conslitution) of promoting combinatorial mathcmatics; this has been broally interpreted ns including the relevant areas of computing. It disseminates information about combinatorics nud combinatorialists through its ucwsictler Combianturies nud conduets na namual conferenec with refereed published proceedings. 'Ihere are currently about 120 members from all over the world.

Any interested person is inviten to juin the C.M.S.A. Anmant subseription for 1089 is Australian $\$ 5$, pryable to C.M.S.A. Members receive the newsletter and a reduction in tle conference registration fec. II lense nddress nll enquirics, giving your full mame and address, to Diane Donovan or Elizabelh Billington at the address givell overlenf.

The Sixteenth Australasinu Coufereuse on Combinatorial Mathematics nud Combinatorial Computing will be held at Masscy University, 3-i December, 1000. For further information on this conference, please write to

Dr C.IH.C. Fitlle,
Dept of Madicuraties nad Stalisties, Masscy University, I'almerston Nortli, New Zenlaud.

Matters for the Annual General Meeting

which will be held on Thurselay 130 h July at the Fiffeenth ACCMC: include:
(1) The subscription to the CMSA has remained at $\$ 5$ for some years, while expenses have risen considerably. It is proposed that this be raised to $\$ 100$ per year (possibly with a lower amount for students and uncmployed ar retired people).
(2) At the Aunual General Mecting of the CMSA in 1988 , the following motion was tabled, to be considered at the $\Lambda G M$ in 1989 . (Ser item ${ }^{6}$ in the Minutes of the 1988 AGM, in "Combinatorics", Volume 10 (14RK). Number 2 (August).)

Notice of Intrention to Change the Constimpion

is hereby given, in advance of the AGM as required. 'The following motion has becn submitted to the Society, for consideration at the A GM:
that, in the item "Termination", the phrase
"to the Australian Mathematical Soriety"
be changed to
"equally to the Australian Mathematical Smerely and the New Zealand Mathematical Suciety."

Charles Litituc / Derek Holtom
[See page 18 for the Constitution.]

RECENT NEWS ITEMS

A D.Sc. was conferred on Professor Cheryl Praeger att the University of Western Australia on 181.h April, 1989.
Professor R.G. Stanton (University of Manitohn) will recrive an honorary D.Se. from the University of Qucensland on 17th August, 1989.

TUANK YOU...
We gratefully acknowledge domations for the Piliernilı AC' 'MC(! [rom Professor R.G. Stanton (University of Manitoba) and the Gommonwealth Bank, Si Lucia, Quecusland.

DISCRETE MATUEMATICS BOOKLETS
Members are reminded that CMSA aims to publish a swries of 30 - 50 pace booklets on diserete mathematics. (Sec "Sombinatories", Volume 10 (J!ase). Numbre 2, August, where even a splendid sample roner page is prowherel!

If you wish to contribute please contact the series chitur:
Dr. Kevin MeAvancy, Depnethent of Gmputing amd Mathematies, Vrakin Mniversity, Geclong, Vie. 3217, telephoue (0ri2) 471276.

FIFTEEN'I'II AUSTRALASIAN CONFEIRENCE

On

COMBINATORIAL MATIIEMATICS and COMBINATORLAL COMPUTING

The Fifteenth Australisian Conference on Combinatorial Mahematics and Combinatorial Computing will be held at the University of Quecnsland, Brisbane, Queensland, during the week 10-14 July 1089. All interested persons are cordially invited to attend, and contributed papers are welcome in all areas of combinatorics and combinatorial computing, pure and applied.
Invited speakers include B. Alspuch (Simon Fraser), K. Iteiurich (Simon Praser), C.C. Lindner (Auburn), B.D. McKay (A.N.U.), R.G. Mullin (Waterloo), A.Rosa (McMaster), D.R.Stinson (Manitoba), R. Thmassia (Illinois), C. Thomassen (Tech.U.Demmark) and N. Womand (Auckland).

At least one half-day session will lee devoted to combinatorial algorithms. If you have soltware you are willing too demonstrate al the coulerence, please get in tonch with Dr Peter Pades, Dept of Computer Seience, Univ, of Quecusland, St Lucia, Qled 4067 , and let hin know what compating facilities you will need.

The conference registration fee is $A \$ 65$ (members), $\Lambda \$ 75$ (non-members). There may be a limited amount of money available for students who need linancial assistance in order to athend the conference. Any such person should contacl Ame Street (address on newsletter cover), and cuclose a recommendation from their supervisor with their reguest.

The conlerence proceedings will be published by Ars Combinatorin, subjech to the usual atrangements for referecing. Deadline for receipl of manuscripts is Augnst $14 h_{h}$, in cancra-renly form; nevertheless all manuscripts will be strietly refereed.

Accommorlation is avaitalle in Crommell College, on the Universily of Quecnsland campus, at $\$ 34$ per day for bea and breakfast.

Registration will start on the evening of Sunday 9th July, in Ctomwell College; wine and checse will be served. 'Jhere will be a cocktail parly on Monday doll July at the Stall Club after the last lecture of the day, and a limevening at the Schonell 'I'leatre (on campus) on Thesday $111 \mathrm{~h}_{1}$ July, lollowed by (free!) cake and coflee in the Staff Club. Jeven if you decide not to atiend the film evening (filn to be shown will be nolified as sum as possilse), you are most welcome lo join the filu-goers for supper in the Slatl Club at about 9.15 pha, after the lilno.

The conference excursion, on the afternoon of Wednesday 126.li July, will be a boal trip on the Brishanc River from the University of Quecnsland to Newstead
 historical Newslead Honse. 'This will cost no more than $\$ 20$; bring all your friends and it will work out to much less.

The conference dinner will be held on the Thursday evening, 13th July, and will take the form of a barbecue. For this we have booked the covered patio at the back of the Staff Club, overlooking the University Lake. If the weather is uncomfortably cold (possible, but not very likely), we'll have access to the Members' Bar at the Staff club. The cost will be $\$ 10$, for which nuts and chips before dinner, four salads, steak or vegetarian mushroom parcels, coffee and chocolate mints will be provided. Drinks and desserts will be available in addition. The Annual General Meeting of the CMSA will be held before the barbecue, after the last lecture on Thursday alternoon.

A survivors' party will be held on the evening of Friday 14th July.
The third registration form is enclosed; please relurn this if you have not already sent in the second form, and/or you now have extra details to tell us. In particular, if you wish to be met at the airport, please send fight details and we shall try to meet all notified flights; we shall let you know for sure later. Otherwise there is a bus service from the airport to the city of Brisbane, from where either a further bus or a taxi could be taken to the University of Queensland.

A REMINDER! Deadline for abstracts is 1Oth June 1980.

RECENT PUBLICATIONS

Please send in notices of recent publications, prejrints and abstracts of theses. Please mark all such material for announcement in the newsletter.

Diane Donovan, Methods for constructing balanced lernary designs, Ars Combin. (to appear).
Diane Donovan, Single laws for subvarielies of squags, (preprint).
Diane Donovan and Sheila Oates-Williams, Single laws for sloops and squags, Discrete Math. (to appear).
Elizabeth J. Billington, Cyclic balanced ternary designs with block size three and any index, A ss Combin. (to appear).
Elizabeth J. Billington, New cyclic (61, 244, 40, 10, 6) BIBDs, Ann. Discrete Math. (to appear).
Elizabeth J. Billinglon and D.G. Hofman, The number of repeated blocks in balanced ternary designs with block size three, J. Combin, Malh. Combin. Computing (to appear).

Eliznbeth J. Billington and C.C. Lindner, Nearly resolvable designs with block size four and $\lambda=3$, (submitted).
Elizabeth J. Billington and D.G. Hoffman, The number of repented blocks in balanced ternary designs with block size three II, Discrete Mathematics (to appear).
Elizabeth J. Billington, Designs with repented elements in blocks: n survey and some recent results, (submitted).
Ken Gray, On the minimum number of blocks defining a design, Bull. Austral. Math. Soc. (to appear).
D.A. Iolton and B.D. McKay, The smallest non-dnmiltonian 3-connected cubic planar graphs have 38 vertices, J.C.T. B 45 (1988), 305-319.
D.A. Holton and M.D. Plummer, 2-extendability in 3-polytopes, Colloquia. Math. Soc. Janos Bolyai, 52 Combinatorics (1987), 281-300.
R.E. Aldred, Bau Sheng, D.A. Holton and G. Royle, An 11-vertex theorem for 3 -connected cubic graphs, J. Graph Theory 12 (1988), 561-570.
Peter Lorimer, The construction of Tutte's 8-cage and the Condor graph, (preprint; Departinent of Math, University of Auckland, Auckland, New Zealand.)
Peter Lorimer, A construction principle for vertex-transitive graphs, (preprint; address above.)

Sheila Oates-Willinms, Ramsey varieties of finite groups, European J. Combin. 0 (1988), 369-373.

Siducy A. Morris, Sheila Oates-Willinms and H.B. Thompson, Locally compact groups with every closed subgroup of finite index, Bull. London Math. Soc. 10 (to appear).

Jemifer Seberry, Bhaskar Rao designs of black size 3 over groups of order 8, Department of Computer Science, University College, The University of N.S.W., Australian Defence Force Academy, Cmberra, A.C.'T. 2600, Australia; Technical Report C'S 88/4.
Gavin Cohen, David Rubie, Jemifer Scberry, Christos Koukouvinos, Stratis Kounias and Mieko Yomadn, A survey of bnse sequences, disjoint complementary sequences and $O D(4 t ; t, t, t, t)$, A.D.F. A. Technical Report CS 88/6.
Michael Newberry and Jemifer Seberry, User Unique Identification, A.D.F.A. Teclnical Report C'S88/12.
Thomas Hardjono and Jemifer Seberry, A Multilevel Encryption Scheme for Database Security, A.D.1.A. Technical Report CS 88/16.
Christos Koukouvinos, Stralis Kounias and Jemifer Seberry, Further results on base sequences, disjoint complementary sequences, $O D(4 t ; t, t, t, t)$ and the excess of Hadamard mairices, A.D.F.A. Technical Report CS 88/18.

Clıristos Koukouvinos, Stratis Kounias and Jenmifer Seberry, Supplementary Diffcrence Sets and Optimal Designs, A.D.F.A Technical Report CS 88/10.
Christos Koukouvinos, Stratis Kounias and Jennifer Seberry, Further Hadamard Matrices with Maximal Excess and New SBIBD $\left(4 k^{2}, 2 k^{2}+k, k^{2}+k\right)$, A.D.F.A. Technical Report CS 88/20.
Christos Koukouvinos and Jennifer Seberry, Hadamard Mafrices of order $\equiv 8$ (mod 16) with Maxinal Excess, A.D.F.A. Teclunical Report CS $88 / 21$.
R.G. Stanton and Anne Peufold Street, Further results on minimal defect graphs on seventeen points, Ars Combinaloria 20A (1988), 85-90.
Martin J. Sharry and Anne Penfold Street, Partitioning sets of triples into designs, Ars Combinatoria $26 B$ (1988), 51-66.
D.R. Breach and Ame Penfold Street, Partitioning sets of quadruples into designs II, J. Combin. Math. Combin. Computing 3 (1988), 41-48.
Martin J. Sharry and Anne Penfold Street, Partitioning sets of triples into designs II, J. Combin. Math. Combin. Computing 4 (1988), 53-68.
Anne Pcnfold Streei aud Deborah J. Street, Latin squares and agriculture: the other bicentennial, The Mathematical Scientist 13 (1988), 48-55.
Martin J. Sharry and Anne Penfold Street, Parlitioning sets of quadruples into designs I, Discrete Mathematics (to appear).
Martin J. Sharry and Anme Penfold Street, Partitioning sets of quadruples into designs III, Discrete Maihematics (to appear).
J.A. Eceleston and Deborah J. Street, Construction methods for adjustedorthogonal row-column designs, Ars Combinatoria (to appear).
W.H. Wilson, Deborah J. Street and D.A. Moelzer, Hexagonal grids for choice experiments, J. Combin. Math. Combin. Computing. (to appear).

University of Otago
February 1st-18th 1989

The Combinatorial Workshop organised by the Department of Mathematics at the University of Otago was a quite successful event. It attracted many participants from all over the world. Those attending are listed in Appendix 1.

Prolessor Zhang Ke Min Irom Nanjing University planned to attend but was only able to arrive in Dunedin after the Workshop was finished.

Several problems were posed. Most of these are contained in Appendix 2. Significant strides were made on Bill Jackson's problem and progress was made on several other problems.

During the workshop the lollowing talks were given:

Brian Alspach
Katherine Heinrich
Charles Little
Peter Lorimer
Ebad Mahmoodian
Brendan McKay
Gloria Olive
Raymond Scurr

The Double Cover Conjecture
Shelah's Proof of van der Waerden's Theorem
A Constructive Proof of the 2-Ear Theorem
Symmetry, Groups and Graphs
Designs and Graphs
Random Graphs
Some Special Functions that arise in Combinatorics
Generalised Powers Revisited

The organisers wish to thank the New Zealand Mathematical Society and the Beverly Fund of the University of Otago for their financial support.

List of Particidants

Brian Alspach.	Simon Fraser University. Burnaby, B.C. Canada.
Ernie Cockayne	University of Victoria, P.O. BoX 1700 B.C.. Canada
David Glynn	University of Canterbury. Private Bag. Christchurch. (math060@canterbury.ac.nz)
Susan Hamm	Simon Fraser University
Donovan Hare	Simon Fraser University
Katherine Heinrich	Simon Fraser University
Finbarr Holland	University College, Cork, Ireland
Derek Holton	Maths \& Stats, University of Otago. P.O. Box 56. Dunedin. N.Z. MATHDAH@OTAGO.AC.NZ
Bill Jackson	University of Auckland, Private Bag Auckland.
Charles Little	Massey University. Private Bag. Palmerston North
Peter Lorimer	University of Auckland.
Dingjun Lou	University of otago
Brendon Mck ay	Australian National University. Canberra, ACT, Australia
Ebad Mahmoodian	Sharir University of Technology, P.O. Box 11365-8639, Tehran, Iran.
Susan Marshall	Simon Fraser University
Christine Mynhardt	University of South Africa Box 392, Pretoria, South Africa 0001
Gloria Olive	University of Otago
Akira Saito	Tohoku University, Sendai, Japan (from April 1989. Nihon University, Japan)
Raymond Scurr	University of Otago
Bob Sulanke	Boise State University. Boise, Jdaho
Marijke van Rossum	La Salle University, Phlladelphia
Ray Watson	University of Melbourne, Parkville, Vic 3052. Australia.
Joseph Yu	Simon Fraser University
Qinglin Yu	Simon Fraser University

COMBINATORIAL WORKSHOP

Problems

Problem 1 (Ernie Cockayne)

The Ramsey Number (classical) $N\left(q_{1}, q_{2} ; 2\right)$ may be defined in terms of independent sets of vertices of graphs as follows: -
$N\left(q_{1}, q_{2} ; 2\right)$ is the smallest n such that in any 2-edge colouring (red-blue) of K_{n}, the red subgraph has an independent set of size q_{1} or the blue subgraph has an independent set of size Q_{2}.

Analogous numbers may be defined using irredundant sets instead of independent sets. We wish to study these new irredundant Ramsey Numbers and possible generalisations.

Problems $2 \& 3$ (David Glynn)

Notation:
Symbols $\Leftrightarrow \Rightarrow \Rightarrow \forall \exists \in \rightarrow t \rightarrow \Sigma$
Z the set of integers
Q the set of rational numbers
S set of n elcments
$m(S)$ set of subsets of S of size $m,(m \in Z)$
$p(S)$ set of all subsets of S

1. Let G be a permutation group acting on a set S of elements. Define an equivalence relation on $\mathrm{p}(\mathrm{S})$ by $\mathrm{A} \equiv \mathrm{B} \Leftrightarrow \exists \mathrm{g} \in \mathrm{G}$ with $\mathrm{A}^{\mathrm{B}}=\mathrm{B}$. Then this relation is a geometry in the sense of RoG I. Furthermore, if we define A to be the complementary set of A in S, $(\forall A$ in $p(S)$), then there is a natural mapping of the associated equivalence classes of these sets a $\rightarrow \mathrm{a}$, where a and a are the equivalence classes (or subgeometries) of the submodels A and A respectively. Now, a geometry on n elements that satisfies the property that the number of subgeomerries of size m is equal to the number of geomerries of size $n-m$, could be called complementary. Thus, every permutation group gives a complementary geometry. The question is: what extra conditions are necessary, if any, to ensure uhat a complementary geometry corresponds to a permutation group?
2. Let H be the geometry corresponding to a permutation group G , acting on a set S , as in 1 . above. (Then each subgeometry of H comesponds to an orbit of G acting in the natural way on $\mathrm{p}(\mathrm{S})$.) The natural ring (over Z , or algebra over Q), $\mathrm{C}(\mathrm{H})$, as defined in RoG I, has basis elements (a), where a is a subgeomery of H , and where the multiplication
(a)(b):= $\sum(a, b ; c)(c)$, where $\gamma(a, b ; c)$ is the nimber of ways a and b glue together (with possible overlapping, to give a fixed model of the subgeometry c. Now this ring has a very nice structure given by the direct sum of the coefficient ring (Z or Q), x times, where x is the number of subgeometries of $H=$ the number of orbits of G acing on $p(S)$. The complete set of x mutually orthogonal idempotents of $\mathrm{C}(\mathrm{H})$, given in RoG I, which give all information about $\mathrm{C}(\mathrm{H})$, is given by the formulae:
$\mathrm{I}_{c}=\Sigma(-1)^{|\mathrm{dd}| \mathrm{cl}}(\mathrm{c}, \mathrm{d}](\mathrm{d})$, where ($\left.\mathrm{c}, \mathrm{d}\right]$ is the number of submodels of c in a fixed model of d , and where the sum is over all subgeomeries of H .

The question involves the interesting fact that yet another ring may be defined in exaculy the same way, but with the $\gamma(\mathrm{a}, \mathrm{b} ; \mathrm{c})$ being replaced by $\delta(\mathrm{a}, \mathrm{b} ; \mathrm{c})$: the number of ways a and b give together to give a fixed model of c, but with the gluing omituing all the elements in the intersection of the models that represent a and b; i.e the symmetric difference, $(C=A \Delta B)$. The basis elements of this new ring are denoted $\langle d\rangle$, for d in H . Thus, $\langle a\rangle\langle b\rangle=\langle a\rangle\langle b\rangle$ for all subgeomerries a and b of H. One problem is to find the formulae for the complete set of mutually orthogonal jdempotents of this new ring ... e.g. $\Sigma<d>/ 2^{n}$ is such an idempotent, as is $\Sigma(-1)^{|d|}<\mathrm{d}>/ 2^{\mathrm{n}}$. (Of course, the two rings defined above are isomorphic!) The results obtained may be important for the graph reconstruction conjectures.
This second ring or algebra could be called the Δ-ring or Δ-algebra, if no other better names come to mind. This fundamental problem has just been solved by the writer as follows.

For any two subgeometries a, b of H, define $<a, b$] to be the number of models of a intersecting a fixed model of b in an even number of points, minus the number of models of a intersecting in an odd number. Then the principal idempotent (in the Δ-algebra) corrcsponding to $\mathrm{a}, \mathrm{J}_{\mathrm{a}}$, is given by the formula $\left.J_{2}=\Sigma<a, b\right]/ 2^{n}$, where the surn is over all subgeomerries b in H. The inversion formula is surprisingly similar: $\langle a\rangle=\Sigma\langle a, b] J_{b}$. The main question is to use the theory of these rings to prove results about reconstruction and about other problems.

Examples

(a) Let the group G be the symmetric group S_{n} acring on a set K of size n. Let $S=2(K)$. Then G acts on $p(S)$ in the natural way, and each orbit of G on $p(S)$ corresponds to the isomorphism class of an edge-graph having n vertices. Thus the geomerry $H=\left(S_{n}, 2(\mathrm{~K})\right)$, defined in(2) above has, as its subgeomeries, all the edge-graphs on n vertices. The ring $\mathrm{C}(\mathrm{H})$ can be used to prove the best bounds for the edge-graph reconstruction problem (Lovasz and Müller), but a better knowledge of the second ring of (2) may improve this situation further. By the way, what is the status of the reconstruction conjectures for ($\mathrm{S}_{\Omega}, \mathrm{m}(\mathrm{K})$), $\mathrm{m}>2$, (hypergraphs), or for other permutation groups?
(b) Let $\mathrm{n}=3$, and let $\mathrm{H}=\left(\mathrm{S}_{3}, 2(\mathrm{~K})\right)$, where $|\mathrm{K}|=3$. Thus the edge-graphs all have 3 vertices. Let a, b, c, d be the edge-graphs with $0,1,2,3$ edges respectively. Then we have (in the Δ-algebra): $a^{2}=d^{2}=a, b^{2}=c^{2}=3 a+2 c, a b=b a=b, a c=c a=c, a d=d a=d$, $\mathrm{bc}=\mathrm{cb}=2 \mathrm{~b}+3 \mathrm{~d}, \mathrm{bd}=\mathrm{db}=\mathrm{c}, \mathrm{cd}=\mathrm{cd}=\mathrm{b}$; and the principal idempotents are: $(a+b+c+d) / 8,(a-b+c-d) / 8,(3 a+b-c-3 d) / 8,(3 a-b-c+3 d) / 8$.
(c) Let $\mathrm{n}=4$, and let $H=\left(\mathrm{S}_{4}, 2(\mathrm{~K})\right)$, where $|\mathrm{K}|=4$. Thus the edge-graphs all have 4 vertices. There are 11 such edge-graphs. Check that the empty graph, the graph with 2 disjoint edges, the square, and the complete graph, form a subalgebra of the Δ-algebra which is isomorphic to the Δ-algebra constructed from the edge-graphs on 3 vertices. (See (b) above.) There are other nice subalgebras too. Find them. Look at the pairs of graphs in H that form counter-examples to unique reconstruction.
(d) Exercises (* for perhaps a hard one):
(1) Show that the matrix A of coefficients $<a, b]$ satisfies $A^{2}=2^{n} I$, where $n=|S|$.
(2) Show that $\left.<a, b]=(-1)^{|a|}<a, b\right]$, for $a l l a, b$ in H.
(3) Show that $[a]<a, b]=[b]<b, a]$, for all a, b in H, where $[t]$ is $|A u t(t)|$, for t in H.
(Use the fact that the number of models of t in S is $\mid G V /[t]$.)
(4) Show that $\left.<a, b]=(-1)^{|b|}<a, b\right]$, for all a, b in H.
(5) Show that the mapping h_{b} from the Δ-algebra of H to Q defined by $\left.h_{b}(a)=<a, b\right]$ is a homomorphism, for all bin H .
(6)* Show that the idempotents J_{a} are orthogonal and idempotent, (i.e. $J_{a} \cdot J_{b}=0$ or J_{a}, as $\mathrm{a} \neq \mathrm{b}$ or $\mathrm{a}=\mathrm{b}$), and prove the idempotent formulae.
(7)* Suppose that $\mathrm{a} \neq \mathrm{b}$ are in H , and $\mathrm{la}|=|\mathrm{b}|=\mathrm{e}$. Suppose also that $(\mathrm{x}, \mathrm{a}]=(\mathrm{x}, \mathrm{b}]$ for all x in H with $|x|<e$. The notation (x, a] denotes the number of models of a in a fixed model of b. Thus a and b are not uniquely reconstructable in H. Show that $[a]\left\{\mathrm{I}_{\mathrm{a}}-(\mathrm{a})\right]=[\mathrm{b}]\left\{\mathrm{I}_{\mathrm{b}}-(\mathrm{b})\right\}$, that $I_{a}=(a)^{2}-[a]^{-1}[b](a)(b)$, and $I_{b}=(b)^{2}-[b]^{-1}a(b)$, in $C(H)$.
Multiply these formulae by (x) in $\mathrm{C}(\mathrm{H})$ and interpret the coefficients to show that $(x, a]-(x, b]=(-1)^{e} \cdot[(x, a]-(x, b])$. Then show, for any g in H, if the number of models of g in $S,|G| /[g]$, is less that 2^{e-1}, or if $|g| \leq e$ and $g \neq a$ or b, then $(g, a]=(g, b)$. Finally, show Müller's result for edge-graphs (substitute $g=a$), that if $G=S_{n}$. (acting on the 2-sets of an n-set), then [$a] \leq n!/ 2^{e-1}$, i.e. that since $[a] \geq 1, n!\geq 2^{2-1}$ is a necessary condicion for a and b to exist. Thus a and b have a fairly small number of edges (or elements).
Finally, show that $h_{a}(x)-h_{b}(x)=2^{c} \cdot\{(x, a]-(x, b])=(-2)^{e} \cdot[(x, a]-(x, b]\}$, for all x in H.
(e) If G is the identiry group, then the Δ-algebra is just the group algebra of $Z_{2}{ }^{n}$ (the direct product of the cyclic group of order $2, n$ times), over Q. Then the marrix A of coefficients $<a, b]$ is a Hadamard marrix ("orthogonal" matrix of 1 's and -1 's).

Further Results

Formulae connecting the permutation group algebras:
Let $\mathrm{C}(\mathrm{H})$ be the natural algebra of H (with unions of models), and let $\mathrm{D}(\mathrm{H})$ be the Δ-algebra of H (with symmetric differences of models). The subgeometries of H correspond to the orbits on $\mathrm{p}(\mathrm{S})$ of a permutation group G acting on S. Let $n=\mid S I$, let (a, b b be the number of submodels of a in a fixed model of b, and let $<a, b$] be the number of models of a intersecting a fixed model of b in an even number of elements, minus the number of models intersecing in an odd number, where a and b are subgeomerries in H . (The sums are all over subgeometries b in H .)
(1) the idempotents of $C(H): I_{a}=\Sigma(-1)^{\mid b H} H_{\text {al }}(a, b](b)$
(2) $(\mathrm{a})=\Sigma(\mathrm{a}, \mathrm{b}] I_{b}$
(3) the idempotents of $\left.D(H): J_{a}=\Sigma<a, b\right]12^{n}$
(4) $\left.\langle a\rangle=\sum<a, b\right] J_{b}$
(5) $I_{a} \cdot I_{b}=0$ if $a \neq b$, and $=I_{a}$ if $a=b$
(6) $\mathrm{J}_{\mathrm{a}} \mathrm{J}_{\mathrm{b}}=0$ if $\mathrm{a} \neq \mathrm{b}$, and $=\mathrm{J}_{\mathrm{a}}$ if $\mathrm{a}=\mathrm{b}$
(7) \forall a in H , the mapping $\mathrm{g}_{\mathrm{a}}: \mathrm{C}(\mathrm{H}) \rightarrow \mathrm{Q}$ defined by $\mathrm{g}_{\mathrm{b}}((\mathrm{a}))=(\mathrm{a}, \mathrm{b}]$ is a homomorphism onto Q
(8) \forall a in H, the mapping $h_{a}: D(H) \rightarrow Q$ defined by $\left.\left.h_{b}(<a\rangle\right)=<a, b\right]$ is a homomorphism onto Q
(9) $C(H) \cong D(H)$; let the isomorphism be $I_{a} \leftrightarrow J_{a}$, for all a in H, from now on; i.e. $I_{a}=J_{a} \& g_{g}=h_{a}$
(10) $(\mathrm{a})=\Sigma(-1)^{1 \mathrm{bl}}(\mathrm{a}, \mathrm{b}]/ 2^{\text {lal }}$
(11) $\langle\mathrm{a}\rangle=\sum(-2)^{|b|}(\mathrm{a}, \mathrm{b}](\mathrm{b})$
(12) $\left.(a, y]=\Sigma(-1)^{[b]}(a, b]<b, y\right] / 2^{|a|}$
(13) $<\mathrm{a}, \mathrm{y}]=\Sigma(-2)^{)^{b}}(\mathrm{a}, \mathrm{b}](\mathrm{b}, \mathrm{y}]$

Reconstruction theory:
Let x and y have the same proper subgeomerries;
i.e. $(b, x]=(b, y]$ for all $b \neq: a^{a} y$, and $|x|=|y|=e$.

Then by (13), <a, x]-<a,y]=(-2)c$(a, x]-(-2)^{c}\left(a, y^{\prime}\right]=(-2)^{c}\{(a, x]-(a, y]\}$.
Thus $<x, x]-<x, y]=(-2)^{e}[(x, x]-(x, y]\}=(-2)^{e}$.
Let X and Y be fixed models of x and y respectively, and let the number of models of x intersecting
X in an (even,odd) number and Y in an (even,odd) number be ee, eo, oe, oo respectively.
Then $(e e+e o-\alpha e-\infty)-(e e+\infty-e 0-\infty)=(-2)^{e}$.
Hence oe - eo $=(-2)^{c-1}$, and so eo $+\infty \quad \geq 2^{c-1}$.
Thus the number of models of x is at least 2^{e-1} and so $n!/[x] \geq 2^{2-1}$.
This gives Müller's result for H . Notice also that the set of all elements k of $\mathrm{C}(\mathrm{H})$ with
$g_{x}(k)=g_{y}(k)$ is a subring R such that $\Sigma \chi_{b}$ in $R \Leftrightarrow \Sigma \chi_{b}(b)$ in R.
References:
Avellis, G., \& Borzacchini, L., Reconstruction theory for G-graphs, Ars Combinatoria 25A, 173-177, 1988.
Kerber, A., Enumeration under finite group action: symmery classes of mappings, Lecrure Notes in Mathematics 1234, (Combinatoire énumérative, Montreal, 1985), 161-176, 1986.
Krasikov, I. \& Roditty, Y., Balance equations for recursive problems, Archiv der Mathemank (Basel) 48 (5), 458-464, 1987.
Müller, V., The edge reconstruction hypothesis is true for graphs with more than $n \log _{2} n$ edges, J. Combin. Th. Ser. B 22 (1977), 281-283.
Plesken, W., Counting with groups and rings, J. Reine und Angewandte Math 334, 40-68, 1982.
RoG I: Glynn, D.G., Rings of Geometries I, J. Combin. Th. Series A 44 (1987), 34-48.
RoG II: Glynn, D.G., Rings of Geometries II, J. Combin. Th. Series A 49 (1988), 26-66.

Problem 4 (Derek Holton)

The aim is to eventually find the largest possible k for which the following statement is true:

In any 4-connected 4-regular graph G any k vertices lie on a cycle.
We know that $k \geq 8$. A possible way to show that $k \geq 9$ is to construct a 3 -connected 3 -regular subgraph of G because it is known that in any such graph any 9 vertices lie on a cycle.
(Actually, if we could construct such a subgraph ! think we could probably show $\mathrm{k} \geq 12$.)

Problem 5 (Bill Jackson)

Let $\mathrm{f}(\mathrm{n}, \mathrm{d})$ be the largest integer such that every simple planar graph on n vertices of minimum degree o has a matching M with $|V(M)| \geq f(n, d)$. It is easy to see that $f(n, 1)=2$, and $f(n, 2)=4$ for $n \geq 4$. I think I can show that $f(n, 3)=2(n+4)$. Can one determine $f(n, 4)$ and $f(n, 5)$?

Problem 6 (Bill Jackson)

Various authors have constructed families of 3 -connected planar graphs G whose longest cycle has length n^{t} for a suitable constant $\mathrm{t}<1$. Can one obtain a reasonable lower bound for the length of a longest cycle in such graphs?

Problem 7 (Charles Little)
Let G be a brick for which every ear decomposition includes more than one 2 -ear addition. Must G be isomorphic to the Petersen graph?
(The terminology is taken from Lovasz and Plummer, Matching Theory Akademiai Kiado. Budapest. 1986.)

```
Problem B (Chris Malcolm)
A Colourful Solution to the Soma Puzzle
```

An unkind person recently told me that all 239 solutions (there's a bug in your program I told him - the 240 th is weird) to the soma cube puzzle could be generated in a few minutes on a PC in (eeugh!) FORTRAN. Since it takes my PROLOG pragram several hours to do this, and I will soon discover how much horribly longer it will take to solve soma5 and somab problems, 1 am VERY interested. In order to keep my proposed programme ol SERC-funded research fun". it is clear that I need orders of magnitude improvement in the initial solution of the soma part dispositions within the shape. Note that I am cocnerned with arbitrary shapes, not just cubes.

He says it is done by colouring. First you checker the cube (2 colours), and throw out those part positions which don't give the right colouring, i.e., the right totals of cubies of each colour. Especially neat about chcekering parts is that the colouring is rotation independent. So far so good. Then you paint the cube with more colours, and more, and more, in the same sort of way (?), until you get to 27 colours, at which point the problem is solved (?!?).

My problem is not being able to understand "in the same sort of way". I see the utility of chackering. which is a well known technique in this kind of problem, but all >2 colour colourings of the cube 1 have thought of don't seem -10 my nalve inspection - to have much of a compulational edge over "will this part lit in the hole" with backtracking. though they may uselully divide the search space by alew.

My informant has unfortunately forgotlen the details - "it vias a long time ago", and kept no records "because it was trivial".

Suggestions, clues, pointers to research papers, etc., grainfully reaeived. I now have a rew dozen papers on the soma cube puzzle. and ils 20 analogue. pentominoes, mostly by mathematicians lascineted by the combinatorial explosion, and none of them have suggested anything beyond checkering (and counting vertices. edges, etc.). so this method (il it exists) is not obvious. and could merit a math paper.
" lun - a technical lerm in robotics research meaning "industrially relevant".

Problem 9 (Robert Sulanke)

Counting lattice paths with respect to the number of certain turns.

Consider the usual lattice paths on Z^{2} with slep set $|V . H|=\{0.1),(1.0)^{3}$. Let $P(a, b)$ denote the set of pairs of lattice paths from (0.0) to (a, 1, b. 1) such that the two paths intersect only at (0.0) and (a.1. b.1). |P(a,b)| are the Narayana or Runyon numbers and $\Sigma_{a+b \cdot 1}|P(a, b)|$ are Caialan numbers. Let $P(a, b, s, z)$ be that subset of $P(a, b)$ where the lower palh has s VH couples (right-hand turns) and the upper path has z HV couples.

$$
\begin{aligned}
& \text { (1) }\left|\bigcup_{s} P(a, b, s, z)\right|=\frac{1}{z+1}\binom{a}{z}\binom{b}{z}\binom{a \cdot b}{a} \quad \text { [Shapiro. 1984. others] } \\
& \text { (2) }|P(a, b, s, z)|=\frac{a b(s \cdot z+1)-s z(a+b \cdot 1)}{a b(s+1)(z+1)}\binom{a}{s}\binom{b}{s}\binom{a}{z}\binom{b}{z} \text { [Sulanke. others?] }
\end{aligned}
$$

Some problems to consider:

1. Interpret $1 /(z, 1)$ in (1) and the leading quotient in (2).
2. (2) was derived using an invariance property of cyclic permutations of certain other lattice paths, as a bijection exists between the set of these paths and $P(a, b, s, z)$. This method relates to Lagrange inversion. Extend method to other problems.
3. Generalize results to triples of paths in 2 or 3 dimensions.
4. Look for nice q-analogues.

CONSTITUTION

Aim:	To promote Combinatorial Mathematics in Australasia.
Membership:	Ordinary Membership is open to anyone paying the prescribed membership lee.
Fees:	These are to be determined at the Annual Meeting of the Society.
Annual Meeting:	This will be held at the Annual Conference of the Society. An audited account of the financial transactions of the Society for the previous calendar year. must be given at the Annual meeting.
Officers:	The Annual Meeting shall elect a Director. Secretary. Treasurer and other members of the Committee of the Society as it sees fit.
Committee:	The Committee of the Society shall be responsible to the Society for:
	(1) the general business of the Society; and (2) the organisation of the next Annual Conference.
	The Committee shall have power to coopt.
Voting:	A quorum at a meeting of the Society shall consist of ten members.
	Any contentious issue shall be determined by a simple majority vote of the members present. except the alteration of the Constitution or the termination of the Society, both of which require a two thirds majority. Notice of intent to change the Constitution or to terminate the Society must be posted to the Membership one calendar month before the Annual Meeting or a meeting specially convened for one of those purposes.
Termination:	In the event of the Society being terminated, all residual funds and assets of the Society shall be donated to the Australian Mathematical Society.

Fifteenth Australasian Conference
 011
 Combinatorial Mathematics
 and
 Combinatorial Computing

10th-14th July, 1989
University of Queensland

Third and fiual Circular
Registration Form
If you are coming to the conference and lave not returned the second circular, or think you have new information for us, please fill in this form and return it to:

The Secretary, CIMSA
Department of Mathematics
University of Queensland
St. Lucia
Queensland, Australia 406 T.
Name (title) and address:

Do you wish to give a talk?
If so, title:
*** Deadline for abstracts (max length 150 words) is 10 th June.

Do you want accommodation in Cromwell College? If so, for how many people and for which nights?
** Arrival date and time (and flight details if you hope to be met)
**
** Departure date (and time):

Do you wish to go on the river excursion?
Do you wish to attend the conference $B B Q$ dinner?
Are you interested in the film evening? (There will be a free light supper afterwards at 9 pm at the Staff Club.)

